| 课程号 |
04833400 |
学分 |
3 |
| 英文名称 |
Discrete Mathematics and Structures (I) |
| 先修课程 |
无 |
| 中文简介 |
离散数学一是必修学位课程。该课程的主要内容包括:逻辑和集合论、代数、组合计数、离散概率和信息论。本课程将涵盖广泛的主题,尤其是在理论计算机中被广泛使用的数学工具。通过本课程的学习,使学生具有离散数学的基本原理,培养学生抽象思维和慎密概括的能力,掌握处理离散结构所必须的描述工具、数学方法和逻辑表达方式。使学生具有良好的开拓专业理论的素质和使用所学知识,分析和解决实际问题的能力. 为学生以后学习计算机基础理论与专业课程打下良好的基础。更多信息可以参考课程主页。 本课程是一门理论性较强的课程,要求在完成基础知识教学任务的同时,通过适当的实际应用的介绍,提高学生的实际应用能力的培养。
|
| 英文简介 |
Discrete mathematics (I) is a compulsory degree course for computer science and technology major. The main contents of the course include: Basic logic and set theory, algebra, combinatorics and counting, discrete probability and information theory. Through this course, students comprehend the basic principle of discrete math-ematics, and cultivate students' ability of abstract thinking and meticulous gen-eralization. Master the description tools, mathematical methods and expressions necessary to deal with the discrete structure。So that students have a good development of professional theory and the ability to use the knowledge to analyze and solve practical problems. To lay a good foundation for students to learn the basic theory of computers and professional courses.
This course is a strong theoretical course, which requires the completion of the teaching materials and improving students ' practical ability to solve real life problems at the same time.
|
| 开课院系 |
信息科学技术学院 |
| 成绩记载方式 |
|
| 通识课所属系列 |
|
| 授课语言 |
中英双语 |
| 教材 |
离散数学,耿素云、屈婉玲、王捍贫,北京大学出版社,2002年6月;
A Course in Discrete Structures,Rafael Pass and Wei-Lung Dustin Tseng;
Foundations of computer science,Al Aho and Jeff Ulman,ACM/IEEE 2013 CS Curricula,Math for computer science,Eric Lehman, F. Thomson Leighton, Albert R. Meyer, |
| 参考书 |
|
| 教学大纲 |
0
1. Logic & Set Theory (1) Set , Relation, Function, Cardinality and Ordinality (3hours) (2) Thuth Belief Knowledge, Axiom Inference Proof (6hours) (3) Regular Expression and Automata (3hours) (4) Point set topology: interior, open set, homeomorphism (3hours) 2. Discrete Structures (1) Number Theory (6hours) (2) Algebra (6hours) (3) Graph Theory (6hours) 3. Counting and Combinatorics (1) Counting and Discrete Probability (6hours) (2) Combinatorics (6hours) 4. Presentation/Reviwew/Midterm (3hours)
课堂授课为主,有少量习题课。
平时作业30%, 期中期末考试共占70%
|
| 教学评估 |
邓小铁:
学年度学期:17-18-1,课程班:离散数学与结构(I)1,课程推荐得分:4.17,教师推荐得分:4.1,课程得分分数段:85-90;
|
|